If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36k^2-80k-80=0
a = 36; b = -80; c = -80;
Δ = b2-4ac
Δ = -802-4·36·(-80)
Δ = 17920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17920}=\sqrt{256*70}=\sqrt{256}*\sqrt{70}=16\sqrt{70}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-16\sqrt{70}}{2*36}=\frac{80-16\sqrt{70}}{72} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+16\sqrt{70}}{2*36}=\frac{80+16\sqrt{70}}{72} $
| -5y+4=44 | | 6(5t-9)=-31(9-t) | | 8x+8x+7x+7x+5x+5x=720 | | 10x(P)-5x=3x(3+P) | | 200/x=1.5/3 | | 6z-11/3-5/6=-9z+36/6 | | -3(-p+6)=3 | | 3x+10/4-7/8=-13x-6/8 | | 4x+25=9x+10 | | 7x+(-13)=5x-(5+x) | | 6(-m-4)+7(5m+6)=-m+11+3m | | .12+0.8x=-0.08 | | 0.21-5/6x=16 | | 8z-2/4+16/8=16z+3/8 | | 0.208333333-5/6x=16 | | Y-2y=-22 | | 6x-1=11-6x | | 4^5-9t=1÷8^t-2 | | 0.8z+3.5(z+5)=56.2 | | -10(-a-4)=0 | | -2v-12=2+5v | | −5a−=40 | | 3(b-3)=10b-2 | | 3(x+2)−4=4(x+7) | | 2(x+5)-3(6-x)=x-2 | | (-b-6)5=0 | | y/18=-3/8 | | (x+1)^2-1=19 | | 3b+9(-7-b)=0 | | 13t−2=1+6t | | 3x+17=6x-7 | | 4x-24+24=6x-8 |